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ABSTRACT 

Let (X, .4)  be a set with a countably a-generated "Borel" field of subsets; 

let W he a "Borer'  subset of the product  of (X, .A) with the real line R 

and its Borel field B; and for each x E X let ~x he a measure on the "slice" 

Wx = {(w, t) E W: w = x}. It is shown that,  under reasonable conditions, 

the a-field .A | B[ W can be generated by a real-valued function g in such a 

way that ,  given any measurable f :  W --* R, g can be chosen to be arbitrarily 

close to f and so that  its "slice-integrals" fw ,  g(x, t)d~x(t)(x E X) coincide 

with those of f .  This theorem is the first step in a s tudy of monotonic 

sequences of countably generated a-fields. 

1. Introduct ion  

Suppose T is an endomorphism of a Polish measure space (X, B, p) and (for 

n = 0, 1, 2 , . . . )  .4~ -- T-n(B).  The original motivation for the present work 

was a desire to improve the usual "planar representation", of the disintegration 

of B over A1, to a simultaneous representation in the Hilbert cube of all the 

disintegrations of An over .4~+1. This leads more generally to an investigation 

of the structure of a fairly arbitrary monotone sequence B1, B2, . . . ,  Bn , . . .  of a- 

subfields of B (= B0). A useful tool here would be a description of the sequence in 

terms of a martingale (or decreasing martingale) go, g l , . . . ,  gn , . . . ,  "adapted" to 

the sequence; that is, each Bn is to be spectrally generated by the corresponding 

gn. In a subsequent paper [7] the author hopes to use the results of the present 

paper to carry out this program for a reasonably general increasing sequence of 
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a-fields, and also (more interestingly but less completely) for a finite decreasing 

sequence. (For an infinite decreasing sequence, the result has been obtained only 

in a special, though significant, case.) 

The present paper is concerned with a uniformly a-finite sectioned "generalized 

transition kernel" [5] or "conditional measure distribution" [3] on a set X. In 

effect this consists of a subset W of X x •, with a suitable "product Borel field" 

C of "measurable" sets, and measures • (x C X )  on the respective "slices" 

Wx = ({x} • ~) n W, subject to appropriate measurability conditions. The 

result, roughly, is that an arbitrary measurable function f :  X --* W can be 

approximated arbitrarily closely by a one-to-one measurable function g having the 

same "slice-integrals" (i.e., such that fw~ gdT~ -- fw~ f d~/~ for all x). A precise 

statement of the theorem is in Section 2 below. It constitutes a considerable 

generalization of the main theorem of [4], which is essentially the special case of 

the present theorem in which each Wx consists of two atoms. The "arbitrarily 

close approximation" here is in the sense of the topology of close approximation 

[1], which has the advantage that the theorem is invariant if the measures are 

replaced by equivalent ones. 

In view of the application [7] the theorem is actually formulated in terms of 

"spectral generation" by g, rather than by requiring g (as in the rough statement 

above) to be a measurable injection. That  requirement would automatically force 

the a-field C to be countably separated; and in [4] this restriction on C was part 

of the hypothesis. Here we require instead that C is to be "spectrally generated" 

by g - -  that  is, C consists of the sets g-l(B) where B E B(•), the family of Borel 

subsets of the real line. Thus we must assume that C, instead of being count- 

ably separated, is countably (a-) generated. (Conversely, it is well known that 

every countably generated--by which we always mean countably a-generated--  

a-field of sets is spectrally generated by some function.) The present hypothesis 

of countable generation is in a sense stronger than countable separation, because 

one can always make a countable generating system act as a separating system 

too, simply by identifying points not separated. And the conclusion will be cor- 

respondingly stronger, because the generating function g will automatically be 

one-to-one on the resulting quotient space. In "nice" cases (e.g., the Borel sets in 

a Polish space) the a-field C will have the Blackwell property, and the two formu- 

lations become equivalent. It should also be remarked that  countable separation 

is usually not inherited by a-subfields; countable generation is in practice more 
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likely to be inherited --as, for example, by cylinder sets in a product space. 

The analogous theorem for a countably separated C and a measurable injection 

g will also hold, with only minor alterations in the proofs. And the arguments in 

[4] apply almost unchanged to replace "one-to-one" by "spectrally generating" 

in the countably generated case, thereby providing an essential starting point for 

the present work. 

The proof proceeds by applying [5] to replace W by a "planar representation", 

which is then partitioned into countably many simpler pieces, which are dealt 

with separately. This is the technique used in [4]; it requires precautions to 

prevent the separate spectral representations from interfering with one another. 

The device for doing this, justified in [4], is that  the partial functions can be made 

to satisfy a somewhat complicated "range restriction" (see 2.2(iii) below); for 

short, we say that  they are "range restricted". In [4] such restrictions were used 

to ensure that  the injective partial functions fitted together to form an injective 

global one; but it is easy to see that they also ensure that  the generating partial 

functions fit together to form a generating global one. 

2. T h e  t h e o r e m  

2.1. The setting can be described as follows (cf. [5, w167 and 9]). Let ,4 be a a- 

field of subsets of a set X, and form the product (X • A| where B -- B(~) 

and `4| is the "product a-field" (a-) generated by the sets A x B, "A E `4, B E 

/~. We refer to the members of `4 | B as the "Borel" or "measurable" sets. Fix 

a set W E ,4 | The (generalized) transition kernel ~/ is a map assigning to 

each x E X a (non-negative, countably additive, a-finite) measure ~x on `4 | B, 

with ~x(L) depending only on the intersection (possibly empty) of L with the 

"slice" W~ = ((x, t) E W: t E ~[} (also possibly empty), in such a way that,  for 

each L E ,4 | B, the function x ~-~ ~ ( L )  is A-measurable. It is often convenient 

to think of ~ as defined on the Borel sets of the x-slice W~ (x E X); thus we 

may write ~ ( L )  as ~ (L~) ,  where L~ is the x-slice of L E ,4| B. (Caution: The 

"slices" Lx and W~ need not belong to ,4 | B, because we do not assume that  

,4 contains all singletons. However, the sets (t E R: (x, t) E L} will be Borel 

subsets of ~.) 

The emphasis in [5] was on the case in which W = X x [0, 1] and each ~x is 

finite; but the greater generality (as in [5, w167 will be convenient for applications 

[7]. On the other hand, we shall specialize matters in three respects: 
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(1) We shall assume throughout that .4 (which in [5] was an arbitrary a-field) 

is countably (a-) generated. 

(2) We assume that 7 is uniformly a-finite on W; that is, W is expressible as 

U{Ln: n �9 N}, where each L n is "Borel" and %(L  n) < c~ for all x �9 X and 

n �9 N. (This is substantially equivalent to the definition in [3, p. 148], in view of 

the remarks in [5, p. 282]. The notations differ somewhat confusingly; the "X" 

in [3] corresponds to "X • R" in [5], and "Y" in [3] is "X" in [5]. We follow [5] 

here.) 

(3) Define a "Dirac measure" to be one assigning a positive value to some 

singleton and zero to its complement. We assume no "rx is Dirac. 

2.2. THEOREM 1: Assume the set-up in 2.1 (and in particular the assumptions 

(1), (2), (3)). Suppose given 

(a) two .4 | B-measurable real-valued functions f ,  ~, on W,  of which ~ is 

(b) 

Then 

(i) 
(ii) 

(iii) 

(iv) 

everywhere positive, and 

a G~ subset H of R containing Q (the rationals). 

there is an .4 | B-measurable real-valued function g on W such that 

the spectral field of g is .4 | BIW , the family of all "Bore1" subsets of W,  

[ f (x , t )  - g(x,t)l  < e(x, t)  for a11 (x,t)  E W, 

(the "range restriction") for some Fo set M we have g(W) C M C H \ Q, 

and 

for each x �9 X,  fwx  y(x,  t)dT~(t) = fw~ g(x, t)dT~(t) whenever either side 
is defined. 

(Here an integral is "defined" by integrating the positive part and the negative 

part separately and taking the difference provided this does not involve c~ - c~.) 

Remarks: (a) As mentioned in Section 1, the assumption 2.1(1), that .4 is 

countably generated, could be replaced by the assumption that .4 is countably 

separated, with (i) then being replaced by 

(i') g is injective. 

The proof would be essentially the same. 

(b) The complications in the "range restriction" (iii), involving Q, are required 

(and justified) by the construction in [4]. 

(c) The assumption (1) and (3), in 2.1, are not superfluous. 

In fact, (1) is trivially needed if (i) above is to hold. For (3), it is easy to see 

that two Dirac measures %o, %1 (with x0 r Xl) would also make (i) above 
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impossible in general. However, one Dirac measure could be allowed, at the cost 

of complicating the argument. 

It would be interesting to know whether assumption (2) is needed. (It is 

superfluous if each 7x is locally finite, by [2].) Its main significance here is that 

it provides a satisfactory distribution function for 7 (cf. [5]). 

(d) It clearly suffices to prove Theorem 1 with ~ replaced by something smaller: 

Thus we shall assume, for convenience, throughout what follows, that 

/ w  S(X,t)d'~x(t) < (x �9 X)  o o  

r 

(1) 

and 

(2) 
e(x, t) = 1/k(x,  t), where k is a measurable 

function taking positive integer values only. 

2.3. The strategy of the proof of Theorem 1 is to decompose W into countably 

many pieces for each of which the conclusion of the theorem holds, and to deduce 

that it holds for W. More precisely, we prove: 

LEMMA: In the notation of 2.1 and 2.2, suppose W = U{Wn: n E N} where the 

sets W~ are "Bore1" and pairwise disjoint and satisfy 

(a) ~/~(W~) < oo for ali x E X and n E N, 

(b) for each x E X, f[(Wn)~ is bounded, 

(c) for each n and each G~ set H~ D Q, there is a function g~: W~ --~ R such 

that 

(i) the spectral field of gn is (A | 13)lWn , 

(ii) If(x,t)  - g n ( x , t ) l  < ~(x,t) for ali (~,t) E W,~, 

(iii) gn(Wn) C some Fo subset M~ of Ha ".Q, 

(iv) for each x �9 X, I(wo). f(x, t)~vx(t)  = f(w~ ~(x , t )dv~( t ) .  
Then Theorem 1 holds (for W).  

Proof: Define specific sets H~ recursively, as follows. Take H1 to be the set 

H of Theorem 1 (2.2(b)). From condition (c) above we obtain gl: W1 --* ]R 

with spectral field (.A | B)[W1, satisfying conditions (i)-(iv) for n = 1. When 

g,~: Wn -~ R has been defined, with properties (i)-(iv), put H~+I = Hn \ M~ 

and use (c) to obtain g~+l. This defines g~ for all n �9 N, and we put g = LJn g~ 

(that is, g(x, t )  = gn(x,t) when (x,t)  �9 W,~). It is a straightforward matter  to 

verify that  this works. | 



20 D. MAHARAM Isr. J. Math. 

Remark: In the Lemma there is no need to exclude Dirac measures from the 

measures "Y~iWn. They will have to be excluded, however, when the sets W,~ are 

constructed (cf. 3.2 and 3.8 below). 

3. T h e  " p l a n a r "  r e p r e s e n t a t i o n  

3.1. As shown in [5, 9.5], we can arrange (by applying a first-coordinate- 

preserving "Borel" isomorphism) that  W and 7 have the following special form. 

W now consists of the union of three pairwise disjoint .A | B-measurable sets, 

S u T U O',  such that  

(1) the "singular set" S is a subset of X x K ~ where K ~ is a (Lebesgue) null 

Cantor set contained in (-1, 0), 

(2) the "atomic set" T is the union of sets An x { -n} ,  where n = 1, 2 , . . . ,  and 

As C A, and 

(3) the "almost ordinate set" O ~ is of the form O " . N  where O = 

{(x,t):  x C XC,0 _< t < O(x)} for some X c C .4 and some A-measurable 

�9 : X c -* (0, c~] and N is a measurable ("Borel") subset of (9. 

The measure "7= (thought of as located on the x-slice Wx) is zero on Sx, purely 

atomic on I'= (each singleton ( x , - n ) ,  x E An, having positive 7=) and is linear 

Lebesgue measure A on each O~; further, &(N=) = 0 for each x (N is "fully null"). 

We further rearrange T so that  

(4) A ] D  A2 D --- D An D - . - .  

This property was achieved in [5, 8.1] for the case in which all the measures 7= 

are finite. It  was lost in the extension to the uniformly a-finite case, but can be 

restored as follows. Write 

B1 = U A ~  = A1 u (A2 \ A 1 )  U.. -U (As \(A1 U. . -U A~-I)) U. . .  
n 

and 

T1 = (A1 x {-1})U((A2 "- A1) • { -2})U. -  .U((A, \ ( A 1 u - "  "UA~-I)) x { - n } U . . -  . 

Map T1 onto B1 x { -1}  by vertical projection. Now T \ T1 is of the form 

U{A~ x { -n} :  n = 2 ,3 , . . .  }, where A~ C An. Repeat the process, mapping 

the subset 

= • \ x { - 3 } ) u . . . u ( ( A "  • { - n } ) U .  �9 �9 
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of T \ 2"1 by vertical projection onto B2 x {-2} ,  where 

B2 = U{At~: n > 2} C B1; 

and so on. This produces a first-coordinate-preserving isomorphism of T onto 

U{B~ x { -n} :  n = 1, 2 , . . .  } where B1 D B2 D . . . ;  and we replace the sets An 

by the B~'s. (One can verify that  B~ = union of all intersections of n of the sets 

A1, A 2 , . . . . )  

3.2. Define Cn = A,~ \ An+l, Coo = (']{An: n 6 N}; thus Cn is the set of x ' s  for 

which 7~ has exactly n atoms, namely atoms at the points (x, - i ) ,  1 < i < n, and 

analogously for Coo. Write C* = C~ x { - 1 , - 2 , . . . , - n } ,  and C *  - Coo x ( -N) ,  

forming a parti t ion of T. Since there are no Dirac measures %,  C1 must be a 

subset of the projection ~r(O') = X c. We shall combine C~ with a subset of O t 

and deal with it later (3.8). The rest of T, namely 

T \ C~ = C *  [3 U{C~*: n > 2}, 

will now be parti t ioned into pieces to which Lemma 2.3 w'll apply, by means of 

the following lemma. 

LEMMA: Given C E A,  and 2r + 2 A-measurable real-valued functions f ,  hi, h2, 

�9 . . , h r ,  c l , c 2 , . . . , c r , c  on C, where r >_ 2, such that  c l , c2 , . . . , c~  and ~ are 

everywhere positive and f = hi + h2 + ' "  + h~, then there exist range-restricted 

functions ul,  u2 . . . . .  u~ on C, with pairwise disjoint ranges, such that 

(i) f = clul  +c2u2 + ' . ' + c ~ u ~ ,  

(ii) ]ci(x)ui(x) - hi(x)l < s(x) for a11 x 6 C and i = 1, 2,~. . ,  r, and 

(iii) each ui spectrally generates the a-field AIC. 

Remark: As stated in Section 1 (cf. also [4]), the term "range-restricted" here 

serves as an abbreviation for: "Given a G~ set Hi containing Q, the range ui(C) 

is to be contained in some Fo subset Mi of Hi \ Q". 

Proof of Lemma:  For r = 2 the assertion of the Lemma is essentially the Main 

Theorem (Case A) of [4]; the general case follows by a routine induction argument.  

Incidentally, an analogous Lemma is also true for R0 functions hi, but  it does 

not help in the present context, since the set C *  has to be parti t ioned further 

because of the finiteness requirements in Lemma 2.3. 
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3.3. On the subset C* ofT ,  where r _> 2, Lemma 3.2 shows that  the hypotheses 

of Lemma 2.3 are fulfilled (conditions 2.3 (a) and (b) hold because each (C*)= 

is finite). We have f and s given, and take h l , . . . , h ~  in 3.2 to be all equal 

to f / r .  We take c~ = "yi(x,-i)  and define the required spectrally-generating 

range-restricted function by g ( x , - i )  = u~(x) (i = 1 , . . . ,  r). 

Finally we partition C *  into the sets 

C*8=Coo x{-(2s-1),-2s},  s = l , 2 , . . .  , 

and apply the argument for r = 2 to each C~8. Of course, Lemma 2.3 applies to 

these sets too. 

3.4. The "singular set" S is easily dealt with by means of the following lemma 

(which will also be of use later). 

LEMMA: Let Y be an .4 | B-measurable subset of A x JR, where A E A, such 

that A(Y=) = 0 for all x E A. Given measurable functions f:  Y --* • and 

r Y --* (0, oo), there is a range-restricted measurable function g: Y --* ]~, whose 

spectral  eld is .4 • SlY, such t h a t  I / ( x , t )  - g(x,t)l < E(x,t) for all (x,t) e Y 

and, for each x E A, 

Iv= f (x , t )dA( t )  = /v~ g(x,t)dA(t) .  

Proo~ From [4. Cor. 2] we obtain a range-restricted g: Y --* ]R that  is E-close to 

f ,  and (as usual) we can replace the injectivity of g in [4] by spectral generation. 

The final requirement holds automatically and trivially, for here both integrals 

are 0. | 

3.5. As mentioned in 3.2, the subset W n (C1 • •) of W will need 

special attention (to avoid introducing Dirac measures), and we postpone its 

consideration until 3.8. To partition the rest of O ~ appropriately, we shall rely 

on the following lemma. 

LEMMA: Let Y be an A x S-measurable subset o f A  x ~, where A E A, such that 

0 < A(Y=) < c~ for ali x E A. Given measurable functions f:  Y ~ ~ a: A --* R 

and a constant r /E (0, 1) such that a(z )  <_ f ( z ,  t) <_ a(x)  + ~ for all (x, t) E Y ,  

there exists a range-restricted measurable g: Y ~ ~, with spectral field A |  S lY ,  

such that [ f (x , t )  - g(x,t)[ < 2y for all (x , t )  E Y and (for each x E A) 

fy. f (x , t )dA( t )  = /y= g(x,t)dA(t) .  
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We first prove this in a special case, in which Y is a "lower ordinate set" of the 

form {(x,t):  x �9 A, 0 < t < r for some measurable r A --* (0, c~). (Thus 

here r = A(Y~). ) 

Proof'. (in special case) Apply [4, Theorem 1], taking "X" of that theorem to 

be Y, " f"  to be f ,  "g" = f /2  = "h", "c" = 1/2 = "d", and "~" = ~/2. This 

gives range-restricted functions u, w on Y, with disjoint ranges, such that  (for all 

(x,t) �9 Y) f (x , t )  = �89 + �89 and 

] f ( x , t ) -  u(x,t)[ = [ f (x , t ) -  w(x,t)] < rl. 

Further, both u and w 

generating for A | 13]Y. 

Write 

("injective" in [4]) can here be taken to be spectrally 

Y' = { ( x , t )  �9 v :  0 < t < r  y "  = { ( x , t )  �9 v :  r  ___ t < r  

and define g: Y --* ]R by 

u(x,2t) 
9(x, t )  = w(x, 2 t -  r  

if (x, t) �9 Y', 

if (x, t) �9 Y". 

It is easy to see that  g has the required properties. | 

3.6. Next we remove the condition that Y is a lower ordinate set, but obtain 

a slightly weaker conclusion, applying only to Y \ N '  where N '  is "fully null" 

(i.e., A(N~) = 0 for all x). With the original hypotheses of Lemma 3.5, define 

(for x �9 A and t > 0) 

F ( x ,  t) = ~,(Y~ n [0, t))  = :~(Y~ n [0, t]). 

This is A-measurable in x for fixed t, and continuous and increasing (= non- 

decreasing) in t for fixed x, so it is A | B-measurable [6, 3.2]. Hence so also is 

_F, where _F(x, t) = (z, F(x, t)) (see [6], loc. cit.). 

The "extended constancy set" of F (the union of the closures of the intervals 

of constancy for each x) is 

C'*(F) = U{{x}  x [(F~)~_(p), (F~)'--(p)]: p e K(F~),x �9 A} 
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(ibid. p. 10), where 

K(F~) = {p E R: (Fx)- l (p)  has more than one point}, 

and is likewise measurable. 

Write N* = YNC'*(F), a fully null "Borel" set, and put Y* = Y \ N*. Let Z + 

and Z ~ be the upper and lower ordinate sets of the function x --* A(Y~) (x E A); 

that  is, 

Z+={(x , t ) : xEA ,  0 < t < A ( Y x ) } ,  Z~  0_<t<A(Yx)} .  

Note that  here Y* is the "good set" G*(F) of [6, 3.5], since here the "jump 

set" J*(F) is empty (because F~ is continuous in t). As remarked in [6, p. 11] 

(modulo a misprint confusing _F with F),  FlY* is therefore a bijection, onto an 

A | B-measurable set (namely G* (F~) ) ,  and is measurable and has a measurable 

inverse. Since FlY* preserves Lebesgue measure on each x-slice, we have that 

-F(Y*) C Z +, and Z + \ F(Y*) is fully null. 

Put  Z -  = F(Y*) N Z ~ The three sets F(Y*),  Z +, Z ~ differ only by fully null 

sets, so that  Z -  is an "almost ordinate set". 

We abbreviate the restriction _FLY* to F*, and define f ' :  Z ~ ~ R by 

f f ( ( ~ , ) - l ( x ,  t)) if (x, t) E Z - ,  
S'(x, t) 

a(x) if (x, t) E Z ~ \ Z - .  

From the special case of Lemma 3.5 proved above, there is a range-restricted 

measurable g': Z ~ --* R, generating ,4 | BIZ ~ such that ]g'(x, t) - f'(x, t)] < 277 

for all (x, t) E Z ~ and such that, for each x E A, 

/zo g'(x,t)d~(t) = fzo f'(x,t)d)~(t). 

Write ( /~*)- l(Z~ = Y'; this is of the form Y \ N ' where N '  is fully null. Define 

g: Y' ~ R by 

g(x, t) = g' (k(x ,  t ) )  

It is easy to check that g has the required properties for Y' (rather than Y). 

3.7. To complete the proof of Lemma 3.5 as first stated, we merely use Lemma 

3.4 to define a suitably range-restricted function on the omitted fully null set NC 

This combines with the function produced by 3.6 to give a function satisfying all 

the requirements of Lemma 3.5 (because the "slice integrals" over each N~ are 

zero). 
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3.8. We combine the single-atom subset C~' with a subset of the almost-ordinate 

set O ~ as follows. Recall that O' = O \ N, where O is the lower ordinate set 

of a positive (possibly infinite) measurable function O: A ~ (0, ce] and N is a 

fully null subset of O. We shall define a subset P* of O' and produce a suitable 

partitioning (to which Lemma 2.3 will apply) of P* U C~'. 

We use the notation lr~(Y) for the "essential projection" {x �9 X: A(Y~) > 0} 

of an A | B-measurable subset Y of X • [0, ~ ) ,  and e(Y) for the "essential 

part" Y n (~r~ (Y) • R) of Y. Note that  7r~ (Y) �9 A, because of the measurability 

condition satisfied by transition kernels. Thus e(Y) �9 A | B, and Y \ e(Y) is 

fully null: We abbreviate ~/x(x, =1) to e(x) (where x �9 C); this is a positive finite 

A-measurable function. Recall (2.2(2)) that 1/r t) is integer-valued, and write 

(for k �9 N = {1 , 2 , . . . }  and r �9 Z = { 0 , + 1 , + 2 , . . . } )  

ukr  = {(x, t) �9 o ' ,  x �9 61,  t < 1, ~(x, t) = l / k ,  r < 4kS(x,  t) < ~ + 1}, 

forming a countable familY of pairwise disjoint measurable sets with union 

O' M (X x [0, 1)). Enumerate the sets Uk, into a single sequence, say V1, V2,. . . ,  

where V~ = Uk(~)r(.), and consider the pairwise ~lisjoint sets 

Zn = 7rr \ U{Tr~(Vj): j < n}, n E N. 

We have C1 C A because no ^/x is a Dirac measure (2.1(3)), so if x E C1 then 

A(O'M(X • [0, 1)))x = min(~(x),  1) > 0. Thus A(V~)x > 0 for afirst  n, say n(x), 

so that  x c Z.(~). Hence 

(1) [ . J{z~:  n c 1~} = C1. 

Put  Z* -- Vn N (Zn • JR) (n C N). The sets Z~', Z~ , . . .  are pairwise disjoint and 

A • B-measurable. Denote their union by P~; thus P~' C O', and ~re(P*) -- C1 

because ~re(Z~) -- Zn. In particular, 

(2) A(Z*)x>O i f x E Z , .  

We have Z* C Vn = Uk~ for some k = k(n) and r = r(n), and therefore 

(3) 
r r + l  

for a l l (x , t )  e Z * ,  ~ ( x , t ) = l / k  and ~ - ~ _ < f ( x , t ) <  4---k 
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Now, for n, h, j �9 N, define 

C~hj = {x �9 Z~: e(x,-1)  = 1/h, j - 1 < c(x)/A(Z*)~ < j}, 

c~hj = c~hj • {-1}, 

P~hj = z* n (cnhj x R), qnhj = Pnhj u c~hj. 

The sets Cnhj form an A-measurable partition of C1, and the sets Pnhj form an 

.4 | B-measurable partition of P*. Thus the s e t s  Qnhj form an A|  B-measurable 

Z* partition of P* U C~. Note that if x E C~hj then (Pnhj)~ = ( ~)~. Now consider 

a particular Qnhj. The suffixes n, h, j will remain fixed until the end of the 

argument, so to save notation we omit them, writing simply Q = P u C* for 

Qnhj = Pnhj [-J C*hj. Accordingly we have 

(4) i f ( x , - 1 ) � 9  t h e n e ( x , - 1 ) - - 1 / h  and j - l < c ( x ) / ~ ( P ~ )  <j.  

Apply [4, Cor. 2, p. 152] to the function f on C*, taking "e" (in the Corollary) to 

be inf (1/h, 1/2jk), where k = k(n). This provides a range-restricted spectrally 

generating function g-1 on C (= Cnhj) such that 

(5) Ig-l(x) - f (x , -1)]  < inf(1/h, 1/2jk) (x e C). 

Write ~(x) = ( f (x , -1) -g- l (x ) )c (x) /A(Px)  (x e C); from (4) and (5) we have 

I~(x)] < 1/2k. Define 

f (x ,  t) = f(x,  t) + ~(x) for all (x, t) e P. 

Apply Lemma 3.5 to the function "f"  = f on "Y" = P,  taking a(x) = ~(x)+r/4k 
and ~ = 1/4k, and noting that a(x)  < f (x , t )  <_ a(x) + ~ when (x,t)  E P,  as 

Lemma 3.5 requires. This gives a range-restricted spectrally generating function 

on P,  with range disjoint from that of g - l ,  such that If(x, t)-~(x,  t)l < 2~ = 1/2k 
and (for each x E C) 

/g  ~(X, t)dA(t) = Jg~ f(x,  t)d~(t). 

Finally, define g: Q ~ R by 

g(x, t) = ~(x, t) if (x, t) e P, 

g(x,-1) = g_l(x) if ( x , - 1 )  e c* .  
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Then g is a range-restricted generating function for A | BIQ, differing from f by 

less than e. And we have 

Q~ (g(x, t) - f (x,  t))d~/~(t) =c(x)(g_l(x) - f (x,  -1 ) )  

+ ./p_ (~(x, t) - f (x,  t))dA(t) 

=3(x)A(Px) - c(x)( f (x , -1)  - g-l(x)) 

=0 .  

This has dealt with a single set Q = Qnhj .  The collection of all these sets 

provides a partition of P* U C~" to which Lemma 2.3 applies. 

3.9. All that  remains of W is the set O ' \ P *  = O",  say. For h,k C N and 

r E Z write 

~-- ( g t t .  
Ehkr {(x,t)  E . h - l < t < h ,  e = l / k ,  r<<_4kf(x , t )<r+l} ,  

forming an .4 | B-measurable partition of O", and define 

F h ~  = e(Ehk~) = (Tre(Ehk~) • R) n Ehk~. 

We have Fhkr = Ehkr \ Nhkr where Nhk~ is a fully null subset of Ehkr; and the 

sets Fhk~, Nhk~ (h, k E N, r E Z) form an A | B-measurable partition of (9". 

Now Lemma 3.4 shows that each Nhkr satisfies the requirements of Lemma 2.3, 

and Lemma 3.5 shows that each Fhk~ satisfies them too, completing the proof of 

Theorem 1. 

3.10. COROLLARY 1: In Theorem 1 (2.2) suppose further that a positive 

measurable function c: W -* (0, oc) is given. Then the theorem continues to 

hold if (ii) and (iv) are replaced by 

(ii)' [ f ( x , t ) -  c(x,t)g(x,t)[ < e(x,t)  ((x,t) E W) and 

(iv)' fw~ f(x ,  t)d'y~(t) = fw~ c(x, t)g(x, t)dT~(t) (x e X). 

To see this, apply Theorem 1 to the functions f / c  and e/c instead of f 

and e, and to the transition kernel q defined by ~ ( H )  = fH~ c(x,t)d%(t) (H E 

A | B[W) instead of 7. 
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COROLLARY 2: Under the assumptions of Theorem 1, suppose further that all 

the "slice-measures" 7~(W~) are finite and positive. Then there is a 

spectrally generating function g: W -+ ~ for B(W) such that the function 

x H fw ,  g(x, t)d'~(t) is a spectral generator for B(X) .  

Proo~ Take a spectral generator h: X --+ R for 13(x), and define f :  W --+ R 

by f ( x ,  t) = h(x)/7~(W~). Apply Theorem 1 to produce a spectral  generator  g 

for B(W),  arbitrari ly close to f ,  such tha t  fw~ g(x, t)d'y~(t) = fw ,  f ( x ,  t)dT~(t ). 

Since this last integral is h(x), the result follows. | 

As this argument  shows, if further the "y~'s are probability measures (i.e., 

"y~(Wx) = 1), we can take g arbitrarily close to h; for now f (x ,  t) -- h(x). 
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